Diabetic wounds pose significant challenges in healthcare due to their slow healing rates and susceptibility to infections, leading to severe complications. In this study, we developed a carbon nanotube-based conductive protein-cellulose hydrogel designed to enhance wound healing through photothermal therapy. The hydrogel's unique properties, including high electrical conductivity and biocompatibility, were assessed in vitro for cell viability, hemolysis, and histological evaluations. In vivo studies on diabetic rats revealed that the hydrogel significantly improved wound healing, with faster wound closure rates. These results were supported by noticeable reductions in inflammatory markers and enhanced blood vessel formation, as observed through immunohistochemical analysis. Additionally, photoacoustic imaging offered real-time data on blood flow and tissue oxygen levels, showing positive trends in the healing process. Overall, these findings point to the potential of this conductive hydrogel, especially when paired with photothermal therapy, to serve as an effective treatment for diabetic wounds, offering promising possibilities in wound care strategies.