Testis metal toxicity remediation by agro-food waste: evidence of a protective effect of melon seed husk extract Cucumeropsis mannii silica nanoparticles on gonadotropin and sex steroid hormones.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Doris N Ajibo, Chidinma P Anyachor, Loredana Assisi, Baridoo Donatus Dooka, Kenneth M Ezealisiji, Valeria Guerretti, Giulia Guerriero, Orish Ebere Orisakwe, Chinna N Orish, Costantino Parisi, Emidio M Sivieri, Rubina Vangone

Ngôn ngữ: eng

Ký hiệu phân loại: 271.095 *Secular institutes

Thông tin xuất bản: Germany : Environmental science and pollution research international , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 717308

 Male fertility is strongly affected by the overexpression of free radicals induced by heavy metals. The aim of this study was to produce nanoparticles from the agro-food waste, Cucumeropsis mannii melon seed husk extract (MSHE), whose burned seeds in Nigeria become incorporated into the soil contributing to pollution
  and to propose a potential remediation biomarker adoptable to a metal-exposed animal model. Sol-gel precipitated melon husk silica nanoparticles were characterized by spectrophotometric and X-ray diffraction analysis. Biochemical and histopathological tests were performed on male albino rats divided into 8 groups orally exposed to Ni, Al, and Ni/Al both alone as well as co-administrated with MSHE at several dosages. Metal exposure reduced levels of plasma gonadotropin hormones follicle-stimulating hormone (FSH), Luteinizing Hormone (LH), and the sex steroid hormone testosterone, but MSHE co-administration increased them. MSHE treatment alone also raised FSH and LH levels compared to the metal-exposed groups. Plasma gonadotropin prolactin (PRL) levels were higher in each group examined, whereas MSHE co-administration significantly lowered them. Additionally, MSHE treatment alone exhibited lower PRL levels than the mixture-exposed groups and increased testosterone levels. Plasma hormonal results were confirmed by regeneration of testis architecture, testis lipid peroxidation decreases, and testis antioxidant increases. Use of agro-food waste nanoparticles has significant implications as evaluated with male albino rat plasma hormone levels. MSHE may ameliorate Ni-Al mixture-induced testicular toxicity and may be a useful future therapeutic tool.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH