Osteogenesis Differentiation and Molecular Mechanism Study of a Si and Mg Dual-Ion System Based on mRNA Transcriptomic Sequencing Analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Teliang Lu, Tingting Wu, Jiandong Ye, Xinyuan Yuan

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : ACS applied bio materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 717369

Both silicon (Si) and magnesium (Mg) ions play essential roles in bone health. However, the precise mechanisms by which these two ions enhance osteogenic differentiation remain to be fully elucidated. Herein, a Si-Mg dual-ion system was designed to investigate the effects of Si and Mg ions on the cytological behavior of mouse bone marrow mesenchymal stem cells (mBMSCs). The molecular mechanism of the Si-Mg dual-ion system regulating osteogenic differentiation of mBMSCs was investigated by transcriptome sequencing technology. In the single-ion system, the Si group with concentrations of 1.5 and 0.75 mM exhibited good combined effects (cell proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation gene expression (Runx2, OPN, and Col-I)) of mBMSCs. The Mg group with concentrations of 5 and 2.5 mM showed better combined effects (cell proliferation, ALP activity, and osteogenic differentiation gene expression) of mBMSCs. In the dual-ion system, the silicon (0.75 mM)-magnesium (2.5 mM) experimental group significantly enhanced the proliferation, ALP activity, and osteogenesis-related gene expression (Runx2, OPN, and Col-I) of mBMSCs. The analysis of transcriptome sequencing results showed that Mg ions had a certain pro-stem cell osteogenic differentiation regulatory effect. Si ions had a stronger regulation on osteogenic differentiation than the Mg ions. The regulation of osteogenic differentiation by Si-Mg dual ions was synergistically enhanced compared to that of a single ion. In addition, the transforming growth factor beta (TGF-β) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway were involved in mediating the pro-stem cell osteogenic differentiation by Si-Mg dual ions. This study sheds light on investigating the molecular mechanism of dual-ion regulation of the osteogenic differentiation of mBMSCs and enriches the theory of ion-regulating osteogenic differentiation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH