Antimicrobial peptides (AMPs) show considerable promise in combating bacterial infections due to their broad-spectrum efficacy, unique mechanisms of action, and resistance capabilities. In this study, we de novo designed a series of α-helical AMPs (Z1-Z6) with enhanced antimicrobial activity, anti-biofilm, and anti-inflammatory effects. The design incorporated isoleucine with long alkyl side chains and carefully balanced the positive charge and hydrophobicity. Among the designed peptides, Z2 demonstrated remarkable properties. In vitro assays revealed a high therapeutic index, with effective inhibition of 10 pathogenic and drug-resistant bacterial strains by disrupting cell membranes and interacting with bacterial genomes. Z2 also significantly suppressed biofilm formation and reduced reactive oxygen species production in RAW264.7 cells, leading to a decrease in inflammatory cytokine expression, thus showing anti-inflammatory activity. In a mouse model of acute Pseudomonas aeruginosa pneumonia, Z2 significantly improved survival rates, efficiently cleared bacteria from the lungs, and alleviated lung damage. Overall, Z2's unique design endows it with excellent antimicrobial, anti-biofilm, and anti-inflammatory activities, suggesting its great potential as a novel antimicrobial agent for further development. Future research will focus on the studying the drug formulations, elucidating the mechanisms underlying Z2's anti-inflammatory effects and exploring its therapeutic potential in other infection models.