Novel 2,4-thiazolidinedione-benzothiazole-triazole hybrids (7a-7l) were designed and synthesized as therapeutic agents with pleotropic activity for Alzheimer's disease (AD). These compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities. Compound 7k, exhibited exceptional AChE inhibition (IC₅₀ = 0.083 μM), while compound 7d, showed potent activity (IC₅₀ = 0.119 μM). Kinetic studies revealed that 7k was able to exert its action through mixed types of inhibition. Also, the anti-inflammatory potential of these lead compounds was assessed in LPS-stimulated RAW 264.7 macrophages. Both compounds demonstrated significant dose-dependent inhibition of key inflammatory mediators, including NO, TNF-α, IL-6, and IL-1β at non-cytotoxic concentrations (≤10 μM). Notably, compound 7k exhibited superior anti-inflammatory activity, achieving 92 % NO inhibition, 65 % TNF-α reduction, and 61.1 % IL-1β suppression at 10 μM. Moreover, compound 7k exerted neuroprotective activity against H