Piezoelectricity is reported to be able to promote bone scaffolds with excellent osteogenic performance. Herein, barium titanate/β-tricalcium phosphate (BTO/β-TCP) piezoelectric composite scaffolds were 3D printed, and their osteogenic performances were investigated in detail. The fabrication of BTO/β-TCP piezoelectric composite scaffolds employed cutting-edge DLP 3D printing technology. The scaffolds, featuring a triply periodic minimal surface (TPMS) design with a porosity of 60%, offered a unique structural framework. A comprehensive assessment of the composition, piezoelectric properties, and mechanical characteristics of the BTO/β-TCP scaffolds was conducted. Notably, an increase in the BTO volume fraction from 50 to 80 vol % within the scaffolds led to a reduction in compressive strength, decreasing from 2.47 to 1.74 MPa. However, this variation was accompanied by a substantial enhancement in the piezoelectric constant d