Experimental Evidence for Phosphorylation-Driven Allosteric Regulation of Alpha Synuclein Function.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ashlyn N Dollar, Ian K Webb

Ngôn ngữ: eng

Ký hiệu phân loại: 006.312 Data mining

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 717920

Phosphorylation of serine 129 (pS129) in the intrinsically disordered protein alpha synuclein has long been associated with neurodegenerative disease. In the past several years, the functional relevance of pS219 has been uncovered by electrophysiology, immunoprecipitation, and proteomics as intricately connected with neurotransmitter release and synaptic vesicle (SV) cycling. Unexpectedly, binding to SNARE complex proteins VAMP-2 and synapsin only occurs with phosphorylation-competent alpha synuclein. The VAMP-2 binding domain has been shown to be residues 96-110, which does not include the phosphorylated residue, hinting at allosteric regulation of alpha synuclein protein-protein interactions by pS129. Within this study, cross-linking, covalent labeling, and collision induced unfolding of alpha synuclein and pS129 - as well as an additional encountered form in the brain, oxidized-M1, M5, M116, M127 alpha synuclein - are studied utilizing tandem mass spectrometry. Collision induced unfolding of proteins gives a fingerprint of the structures' relative compactness and stabilities of various conformations. Covalent labeling of proteins identifies solvent accessible residues and reveals the hydrophobicity (or hydrophilicity) of their microenvironment, while cross-linking of proteins maps the proximity of residue pairs. The combination of collision induced unfolding, covalent labeling, and cross-linking show unequivocally that phosphorylated-S129 alpha synuclein results in a more stable, more compact form. Our results provide evidence of an extensively folded amphipathic region that interacts strongly with the VAMP-2 binding domain. The phosphorylation-induced folding of the amphipathic region likely tunes other protein-protein interactions and interactions with SVs and membranes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH