Quantitative susceptibility mapping via deep neural networks with iterative reverse concatenations and recurrent modules.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chen Chen, Yang Gao, Min Li, Feng Liu, Yin Liu, Pengfei Rong, Shanshan Shan, Hongfu Sun, Zhuang Xiong

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Medical physics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 718204

 BACKGROUND: Quantitative susceptibility mapping (QSM) is a post-processing magnetic resonance imaging (MRI) technique that extracts the distribution of tissue susceptibilities and holds significant promise in the study of neurological diseases. However, the ill-conditioned nature of dipole inversion often results in noise and artifacts during QSM reconstruction from the tissue field. Deep learning methods have shown great potential in addressing these issues
  however, most existing approaches rely on basic U-net structures, leading to limited performances and reconstruction artifacts sometimes. PURPOSE: This study aims to develop a novel deep learning-based method, IR METHODS: IR RESULTS: In this work, IR CONCLUSION: Overall, the proposed IR
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH