Comparison of variable optimization algorithms for PLS regression models of kerosene content in edible oils.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Quansheng Chen, Jihong Deng, Hui Jiang, Wangfei Luo

Ngôn ngữ: eng

Ký hiệu phân loại: 220 Bible

Thông tin xuất bản: England : Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 718400

Edible oils may become contaminated with harmful substance residues during transportation, posing a serious threat to food safety and public health. This study utilized Fourier Transform Near-Infrared (FT-NIR) Spectroscopy to extract spectral data for kerosene content in soybean and corn oil. Three feature selection models, Competitive Adaptive Reweighted Sampling (CARS), Bootstrapping Soft Shrinkage (BOSS), and Iteratively Variable Subset Optimization (IVSO), were applied to Savitzky-Golay (SG) preprocessed data. Using the selected features, Partial Least Squares (PLS) regression models were developed. The CARS-optimized PLS model demonstrated superior generalization performance, achieving an RMSEP of 2.4520 mg·kg
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH