Host-microbiota cooperation is critical for successful intestinal homeostasis. The commensal segmented filamentous bacteria (SFB) are crucial for orchestrating the post-natal maturation of the host gut immune system and establishing a healthy state of physiological inflammation, which largely depends on their intimate attachment to the ileal mucosa. However, the signaling pathways used by SFB to induce gut immune responses and how such responses ultimately control SFB colonization remain controversial. Using gnotobiotic approaches, we showed that SFB load is controlled by complex interactions involving the gut microbiota and the host immune system. Therefore, to clearly determine the role of host immune responses induced by SFB in directly controlling their growth, immunodeficient mice monocolonized with SFB were used. Here, we show that in the absence of a complex microbiota, the humoral immune response is dispensable to control SFB growth in the jejunum and ileum, shortly and later after colonization. In contrast, MyD88 signaling in myeloid cells is critical for licensing interleukin (IL)-22 production by type 3 innate lymphoid cells (ILC3) and CD4