A new design and computational survey on RGD biofunctionalized RADA16-I self-assembling peptide for tissue engineering applications.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Nasrin Jafary Aryan, Amin Kazemi Beydokhti, Havva Mehralitabar, Sakineh Kazemi Noureini

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : International journal of biological macromolecules , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 718757

Tissue engineering constantly needs innovative and biocompatible materials, and peptide-based materials seem very inspiring. Here we developed two new self-assembling peptides based on RADA16-I and RGD peptides and studied their potential in forming nanofibers under various conditions using all-atom and coarse-grained molecular dynamics simulation methods. First, a double-tailed RGD (dtRGD) peptide was designed by attaching two RADA16-I tails to an RGD-containing loop in which two disulfide bonds stabilized the loop integrity. In the second design, we bonded one side of the loop to the DA16-I tail (otRGD). The dtRGD peptides exhibited a remarkable propensity to form beta-sheet structures during all-atom MD simulations, starting from the initial random coil structure. The most promising outcomes in nanofiber formation were observed when simulating these peptides in a salt concentration that mimics the extracellular matrix. The representation of the RGD epitope was also significantly evident under these conditions. In the otRGD design, the final structure displayed a globular-like morphology, predominantly possessing coils and alpha-helices secondary structures, while maintaining effective RGD peptide exposure. This investigation signified the possibility of a new RGD representing biomaterial for tissue engineering purposes, however, further theoretical and experimental investigations are imperative to unlock their capabilities and applications.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH