Amyotrophic lateral sclerosis (ALS) is a complex and rapidly progressive motor neuron disorder with a fatal outcome. Despite the remarkable progress in understanding ALS pathophysiology, which has significantly contributed to clinical trial design, ALS remains a rapidly disabling and life-shortening condition. The non-motor neuron features of ALS, including nutritional status, energy expenditure, and metabolic imbalance, are increasingly gaining attention. Indeed, the bioenergetic failure and mitochondrial dysfunction of patients with ALS impact not only the high energy-demanding motor neurons but also organs and brain areas long considered irrelevant to the disease. As such, here we discuss how considering energy balance in ALS is reshaping research on this disease, opening the path to novel targetable opportunities for its treatment.