Kismet/CHD7/CHD8 affects gut microbiota, mechanics, and the gut-brain axis in Drosophila melanogaster.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Adam Alfareh, Takhmina Amin-Rahbar, Any Ardon-Castro, Raina Brown, Jeffery Cavanaugh, Robert Crawford, Alain Hu, Mikkel Herholdt Jensen, Wendy Lee, Eliza J Morris, Kimberly Mulligan, Darren Nguyen, Angelo Niosi, Aliyah Penn, Stephanie Peterson, Kaitlyn Rausch, Punithavathi Sundaramurthy, Nguyên Henry Võ, Chloe Welch, Prince Yadav, Yelena Yuldasheva

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Biophysical journal , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 719494

The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH