The quest for heightened energy efficiency is inextricably linked to advancements in energy storage and conversion technologies, wherein multifunctional catalysts play a pivotal role by mitigating the slow kinetics endemic to many catalytic reactions. The intricate synthesis and bespoke design of such catalysts, however, present notable challenges. Addressing this, the present study capitalizes on a novel dissolution manufacturing strategy to engineer self-supporting, nanoporous multifunctional electrocatalysts, circumventing the prevalent issue of customizing catalytic functionalities upon demand. This innovative approach grants the flexibility to finely tune the incorporation of active species and metalloid binders, culminating in the creation of a self-supporting nanoporous metal glass electrocatalyst doped with RuO