Transmission electron microscopy (TEM) plays a crucial role in heterogeneous catalysis for assessing the size distribution of supported metal nanoparticles. Typically, nanoparticle size is quantified by measuring the diameter under the assumption of spherical geometry, a simplification that limits the precision needed for advancing synthesis-structure-performance relationships. Currently, there is a lack of techniques that can reliably extract more meaningful information from atomically resolved TEM images, like nuclearity or geometry. Here, cycle-consistent generative adversarial networks (CycleGANs) are explored to bridge experimental and simulated images, directly linking experimental observations with information from their underlying atomic structure. Using the versatile Pt/CeO