Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae).

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ed Biffin, Timothy A Hammer, Jürgen Kellermann, Francis J Nge, Thais Vasconcelos, Michelle Waycott

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Annals of botany , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 720038

 BACKGROUND AND AIMS: Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations between ploidy and plant radiations could be the result of polyploid lineages exploiting broader niche space and novel niches due to their enhanced adaptability. The evolution of ploidy and its link to plant diversification across the Australian continent is not well understood. Here, we focus on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae. METHODS: We generated a densely sampled phylogeny (90 %, 215/240 species) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using treePL. Ploidy estimates for each sequenced species were obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling and WorldClim data. KEY RESULTS: Polyploidy is extensive across the tribe, with almost half (45 %) of species and the majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e. species richness), but a non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae
  however, polyploidy did allow transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of south-west Western Australia. CONCLUSIONS: The relationship between polyploidy and diversification is complex. Ancient polyploidization events likely played an important role in the diversification of species-rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH