The photoelectrochemical selective oxidation of biowaste glycerol into the high value-added material, along with hydrogen production, holds significant promise for advancing renewable and sustainable energy technologies. Here, the surface oxygen state of tungsten oxide is modified to selectively oxidize glycerol into glyceraldehyde, a high-value-added material, and the selectivity is maintained over a prolonged period using the photo-stimulated self-recovery capability. The surface-coordinated photoelectrode exhibits high charge transfer efficiency to glycerol and favorable glycerol adsorption capacity, enabling the selective conversion of glycerol. At 1.2 V