The rapidly evolving landscape of artificial intelligence (AI) and machine learning (ML) in medicine has prompted medical professionals to increasingly familiarize themselves with related topics. This also demands grasping the underlying statistical principles that govern their design, validation, and reproducibility. Uniquely, the practice of pathology and medicine produces vast amount of data that can be exploited by AI/ML. The emergence of generative AI, especially in the area of large language models and multimodal frameworks, represents approaches that are starting to transform medicine. Fundamentally, generative and traditional (eg, nongenerative predictive analytics) ML techniques rely on certain common statistical measures to function. However, unique to generative AI are metrics such as, but not limited to, perplexity and BiLingual Evaluation Understudy score that provide a means to determine the quality of generated samples that are typically unfamiliar to most medical practitioners. In contrast, nongenerative predictive analytics ML often uses more familiar metrics tailored to specific tasks as seen in the typical classification (ie, confusion metrics measures, such as accuracy, sensitivity, F1 score, and receiver operating characteristic area under the curve) or regression studies (ie, root mean square error and R