Leveraging Network Target Theory for Efficient Prediction of Drug-Disease Interactions: A Transfer Learning Approach.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zizhen Chen, Shao Li, Liren Liu, Qingyuan Liu, Boyu Pan, Miaomiao Shen, Boyang Wang, Tingyu Zhang, Zhuoyu Zhang, Weibo Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 922.91 *Atheists and Deists

Thông tin xuất bản: Germany : Advanced science (Weinheim, Baden-Wurttemberg, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 721065

Efficient virtual screening methods can expedite drug discovery and facilitate the development of innovative therapeutics. This study presents a novel transfer learning model based on network target theory, integrating deep learning techniques with diverse biological molecular networks to predict drug-disease interactions. By incorporating network techniques that leverage vast existing knowledge, the approach enables the extraction of more precise and informative drug features, resulting in the identification of 88,161 drug-disease interactions involving 7,940 drugs and 2,986 diseases. Furthermore, this model effectively addresses the challenge of balancing large-scale positive and negative samples, leading to improved performance across various evaluation metrics such as an Area under curve (AUC) of 0.9298 and an F1 score of 0.6316. Moreover, the algorithm accurately predicts drug combinations and achieves an F1 score of 0.7746 after fine-tuning. Additionally, it identifies two previously unexplored synergistic drug combinations for distinct cancer types in disease-specific biological network environments. These findings are further validated through in vitro cytotoxicity assays, demonstrating the potential of the model to enhance drug development and identify effective treatment regimens for specific diseases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH