BACKGROUND: Irreversible electroporation (IRE) has augmented the effects of certain immunotherapies in pancreatic ductal adenocarcinoma (PDA). Yeast-derived particulate beta-glucan induces trained innate immunity and successfully reduced murine pancreatic cancer burden. This is a phase II study to test the hypothesis that IRE may augment beta-glucan-induced trained immunity in patients with PDA. STUDY DESIGN: In this phase II clinical trial (NCT03080974), surgical ablative IRE was performed on clinical stage III PDA followed by oral beta-glucan administration for 12 months or until disease recurrence. Peripheral blood was taken preoperative, 14 days, and every 3 months and was evaluated by mass cytometry and compared with patients who received IRE alone. RESULTS: Thirty consecutive patients with preoperative clinical stage III PDA were treated with IRE and then initiated on oral beta-glucan postoperatively were compared with 20 patients treated with IRE alone. There were no dose-limiting toxicities with oral beta-glucan, and compliance with therapy was 96% in all patients. Seven patients (23%) developed grade 3 or 4 treatment-related adverse events at 90 days
none required a dose modification of oral beta-glucan. A median disease-free interval (DFI) was 18 months (range 6 to 48 months), with a median overall survival (OS) of 32.5 months (range 4 to 53 months). At 12 months post-IRE, immunophenotyping was demonstrated a significant effect with improvement in the IRE-beta-glucan-treated group. This also resulted in a significant decrease on naive CD4 and CD8 T cells with increased CD4 and CD8 terminal effector cells in the IRE-beta-glucan-treated group, which correlated with a significant improvement in DFI and OS (p = 0.001). CONCLUSIONS: Combined beta-glucan with IRE-ablated PDA tumor cells elicited a potent trained response and augmented antitumor functionality at 12 months post-IRE, which translated into an improved DFI and OS.