Cancer-associated fibroblast-derived exosomal FAM83F regulates KIF23 expression to promote the malignant progression and reduce radiosensitivity in non-small cell lung cancer.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yongpeng He, Rui Hu, Xiaogang Hu, Yi Li, Wenli Peng, Minxin Tang, Tingting Xie, Lina Zhang, Mingming Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : Cytotechnology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 721351

UNLABELLED: Cancer-associated fibroblasts (CAFs) have been shown to play a crucial role in the progression of non-small cell lung cancer (NSCLC). Exosomes derived from CAFs have emerged as important mediators of intercellular communication in the tumor microenvironment, contributing to cancer progression. Therefore, it is essential to further investigate the mechanisms by which CAF-derived exosomes regulate NSCLC. CAFs promoted NSCLC cell proliferation, invasion, and migration, while also suppressing radiosensitivity. We observed an upregulation of FAM83F expression in both NSCLC cells and NSCLC cells treated with conditioned medium from CAFs. Notably, CAF-derived exosomes were found to transfer FAM83F to NSCLC cells, thereby enhancing the malignant properties of the cancer cells. In contrast, FAM83F-deficient CAF-derived exosomes exerted inhibitory effects on NSCLC cell proliferation, invasion, and migration, while also sensitizing the cells to radiotherapy. FAM83F was found to interact with KIF23 in NSCLC cells, and the overexpression of KIF23 attenuated the effects induced by FAM83F-deficient exosomes in NSCLC cells. Moreover, FAM83F-deficient CAF-derived exosomes were effective in inhibiting tumor formation SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10616-025-00713-x.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH