Membrane proteins play crucial roles in cellular signal transduction, molecule transport, host-pathogen interactions, and metabolic processes. However, mutations, changes in membrane properties, and environmental factors can lead to loss of protein function. This results in impaired ligand binding and misfolded structures that prevent proteins from adopting their native conformation. Many membrane proteins are also therapeutic targets in various diseases, where drugs can either restore or inhibit their specific functions. Understanding membrane protein structure and function is vital for advancing cell biology and physiology. Experimental studies often involve extracting proteins from their native environments and reconstituting them in membrane mimetics like detergents, bicelles, amphipols, nanodiscs, and liposomes. These mimetics replicate aspects of native membranes, aiding in the study of protein behavior outside living cells. Scientists continuously explore new, more native-like membrane mimetics to improve experimental accuracy. This dynamic field involves evaluating the advantages and disadvantages of different mimetics and optimizing the reconstitution process to better mimic natural conditions.