Human umbilical cord mesenchymal stem cell-derived exosome ameliorate doxorubicin-induced senescence.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kaiqun Ren, Jinyu Wang, Feng Yan, Manjun Yang, Zhen Yang, Changqiao You, Jiangwei Yuan

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: United States : Experimental cell research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 722213

BACKGROUND: Cellular senescence refers to a condition where cells permanently cease division while maintaining metabolic activity. Doxorubicin (Dox) is known as an agent of induction of cellular senescence. This study aimed to explore the potential role of human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Exo) in mitigating Dox induced senescent. METHOD: NIH3T3 cells were treated by various concentrations of Dox with or without hucMSC-Exo, cell morphology, viability, migration, senescence-associated SA-β-Gal staining were monitored. Cellular senescence was induced in C57BL/6J mice via administration of 5 mg/kg Doxorubicin, followed by treatment with hucMSC-Exo or metformin. Assessments included body weight, liver and kidney weight, colon length, SA-β-Gal staining of kidney and skin, molecular biomarkers of aging such as p16 RESULT: We found that after the treatment of exosomes or metformin improved several aging-related phenotypes in both mouse and cellular models, including increases in body weight, liver and kidney weights, and the reduction of SA-β-Gal positive cells in kidney and skin tissues as well as cell models. At the molecular level, hucMSC-Exo resulted in the downregulation of inflammatory factors and senescence markers in liver and kidney tissues as well as cell models. CONCLUSION: Our study demonstrates hucMSC-Exo may ameliorate Dox induced senescence either in NIH3T3 cells or in mice.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH