BACKGROUND: Chronic Kidney Disease (CKD) has become one of the major life-threatening conditions. Moringa seeds have been reported to exhibit renoprotective effects, with Niazimicin as its characteristic component. OBJECTIVE: To investigate the anti-renal injury effects of Niazimicin and its mixed micelles (N-M) that composed of monomethyl ether poly (ethylene glycol)-polycaprolactone (mPEG-PCL) and polyethylene glycolated chitosan (PEG-CS) on adenine-induced CKD mice. METHODS: PEG-CS was prepared via formaldehyde linkage method. The thin film dispersion method was employed for the preparation of N-M before it was characterized in vivo and in vitro. The anti-renal injury effects were evaluated by analyzing the serum levels of creatinine (Cr), p-Cresol sulphate (pCs), indole sulphate (IS) and hematoxylin-eosin (HE)-stained sections of hepatic and renal pathological tissues in CKD mice. RESULTS: The N-M were spherical micelles of uniform size and highly dispersed with particle size of 42.94 ± 0.58 nm, encapsulation efficiency (EE) of 97.73 ± 2.33% and drug loading (DL) of 16.17 ± 0.28%, as well as good stability, and a very low critical micelle concentration (CMC) value of 0.00731 mg/mL. The N-M had a delayed-release effect and higher oral bioavailability compared to Niazimicin. CONCLUSION: In CKD mice, Niazimicin exhibited an anti-renal injury effect, while the renoprotective effect of N-M was superior to that of Niazimicin.