Honeybees (Apis mellifera) are increasingly exposed to pesticides and microbial stressors, yet their combined effects on immune defenses remain unclear. Exposure to the neonicotinoid imidacloprid and the acaricide amitraz, alone and in combination, alters antioxidant enzyme activity in hemocytes when challenged with bacterial components such as lipopolysaccharide and peptidoglycan or the fungal-derived molecule zymosan A. The combination of pesticides with zymosan A synergistically suppresses superoxide dismutase and glutathione-S-transferase activity, while catalase activity remains unchanged. In contrast, lipopolysaccharide counteracts pesticide-induced oxidative stress, suggesting immune-pathway-specific modulation. The heightened vulnerability of honeybees to fungal-associated immune challenges in pesticide-contaminated environments compromises their ability to detoxify harmful substances and respond to infections. Such approaches that include comparison of different microbial interactions, pesticide cocktails, and immunity are needed. Understanding these interactions is essential for improving pesticide regulations and pollinator conservation efforts in the face of increasing environmental stressors.