Advances in immune oncology have established immunotherapy as the first-line standard treatment for lung cancer
however, its efficacy remains limited to a subset of patients. Developing predictive biomarkers within the tumor microenvironment (TME) to assess the efficacy and prognosis of immunotherapy can enhance drug development and treatment strategies. Immuno-positron emission tomography (ImmunoPET) non-invasively visualizes the biological distribution of key targets in the TME using highly specific, radiolabeled tracers. PET imaging of the TME can serve as a reliable biomarker for predicting and monitoring responses to immune therapy, complementing existing immunohistochemical techniques. This review will focus on the development of ImmunoPET biomarkers, as well as the application of corresponding tracers and radionuclides in lung cancer. We will focus on available clinical tracers and those under development, outlining each TME target and its clinical validation for tumor immunotherapy efficacy and prognosis, while discussing the latest advances that may enhance ImmunoPET in future.