Microbial communities play crucial roles in ecosystem functioning, yet their diversity and assembly in urban turfgrass systems remain underexplored. In 2017, microbial communities within 48 samples from managed turfgrass (home lawns, golf course fairways, and putting greens) and an unmanaged grass mixture in Madison, WI, USA were analyzed across leaf, thatch, rhizoplane, and rhizosphere habitats Intensive management, particularly in nitrogen-rich, sand-based putting greens, reduced fungal richness and diversity, whereas bacterial diversity patterns varied. Beta diversity analyses revealed distinct clustering: fungal communities differed most in unmanaged systems, while bacterial communities clustered within managed systems. Functional profiling demonstrated that bacterial communities maintained metabolic stability despite taxonomic shifts, while fungal communities showed dynamic functional responses to management. Furthermore, management practices also impacted microbial community assembly. Bacterial communities were predominantly shaped by neutral, stochastic processes, while fungal communities were more sensitive to management, showing deterministic, niche-based assembly and compositional shifts. These findings underscore the contrasting impacts of management on microbial communities and highlight the importance of sustainable turfgrass practices that balance plant health with microbial ecosystem functions. By linking microbial assembly processes to functional outcomes, this study provides insights for optimizing urban landscapes to enhance soil health and ecosystem resilience.