Translation elongation is a multifaceted process that intricately links translational resource availability to the biophysical effects arising from the interaction of mRNA sequences, ribosomes, and nascent polypeptide chains. Optimizing (heterologous) gene expression via codon usage or tRNA preference alone may yield suboptimal outcomes. In this study, we present a comprehensive mechanistic model that accounts for the competition of tRNAs at the ribosomal A-site, internal Shine-Dalgarno sequence interactions, and the decelerating effects of positively charged peptide patches. Our model offers a holistic perspective on the effects of translational elongation, including growth rate-dependent variation in translational rates by 22 to 25% between slow- and fast-growing