A versatile machine learning workflow for high-throughput analysis of supported metal catalyst particles.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel Belzberg, Phillip Christopher, Arda Genc, Anika Jalil, Libor Kovarik, Justin Marlowe

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: Netherlands : Ultramicroscopy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 722417

Accurate and efficient characterization of nanoparticles (NPs), particularly regarding particle size distribution, is essential for advancing our understanding of their structure-property relationship and facilitating their design for various applications. In this study, we introduce a novel two-stage artificial intelligence (AI)-driven workflow for NP analysis that leverages prompt engineering techniques from state-of-the-art single-stage object detection and large-scale vision transformer (ViT) architectures. This methodology is applied to transmission electron microscopy (TEM) and scanning TEM (STEM) images of heterogeneous catalysts, enabling high-resolution, high-throughput analysis of particle size distributions for supported metal catalyst NPs. The model's performance in detecting and segmenting NPs is validated across diverse heterogeneous catalyst systems, including various metals (Ru, Cu, PtCo, and Pt), supports (silica (SiO
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH