Adaptive Neural Zeta-Backstepping With Predefined Damping Ratio. Application to DC Motors.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Juan J Rodriguez-Andina, Han Wen, Xuebo Yang, Xinghu Yu, Xiaolong Zheng

Ngôn ngữ: eng

Ký hiệu phân loại: 704.9481 Iconography

Thông tin xuất bản: United States : IEEE transactions on cybernetics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 722753

This brief presents an adaptive neural zeta-backstepping control strategy for a class of uncertain nonlinear systems, which allows these systems to be practically stabilized with predefined damping ratios. By introducing the zeta-backstepping technique, system damping ratios can be predetermined based on specific parameter selection rules. To reduce the impact of unknown nonlinearities, neural networks (NNs) with gradient descent training are applied to compensate such nonlinearities online. A new filter, called dynamic command filter, is used to construct the gradient of the NNs. By resorting to second-order Lyapunov stability criteria, it is proved that the closed-loop system is practically stable and has predefined damping ratio. Finally, experiments on a perturbed direct current (DC) motor system demonstrate the advantages of the proposed method.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH