Fe(III) (hydr)oxides are prevalent in natural environments where they impact contaminant mobility, greenhouse gas release, and nutrient cycling. In anoxic conditions, dissimilatory iron reducing bacteria (DIRB) and other microbial groups primarily drive Fe(III) reduction. Dissimilatory iron reduction (DIR) results in the reductive dissolution of Fe(III) phases and subsequent secondary mineralization. These processes are highly sensitive to pH changes, since protons serve as reactants in DIR. However, there is limited understanding of how DIR impacts secondary mineralization and microbial community development under relevant pH gradients. This study investigated the impact of initial pH (6.3, 6.9, 7.3, 7.7, 9) and Fe(III) source (goethite, lepidocrocite) on DIR, using acetate as the electron donor. The rate and extent of Fe(III) reduction decreased with increasing pH and that lepidocrocite, with its relatively lower crystallinity compared to goethite, supported greater DIR activity. Solid phase analyses revealed predominant formation of siderite alongside lepidocrocite reduction in microcosms with initial pH at 6.3 and 6.9. Similarly, in microcosms with initial pH at 7.3 and 7.7, partial transformation to siderite occurred. In contrast, goethite-amended microcosms did not show clear mineralogical transformations, despite the observed Fe(II) production. Microbial community analysis using 16S rRNA sequencing indicated greater enrichment of DIRB at lower pH, with a decline in abundance as pH increased. Overall, pH influenced DIR more than Fe mineralogy, highlighting its critical role in DIR processes, secondary mineral formation, and DIRB community development. This study further provides insights for developing remediation strategies involving microbial Fe(III) reduction under varying pH conditions.