The escalating impacts of climate change have intensified extreme rainfall events, placing urban drainage systems under unprecedented pressure and increasing flood risks. Addressing these challenges requires advanced flood mitigation strategies, optimized sewer operations, and responsive disaster management. This study leverages knowledge graphs to integrate diverse data sources, providing a comprehensive perspective on flood dynamics, and applies deep learning models within a Real-Time Urban Drainage Early Warning System to enhance flood management at Taipei City's Zhongshan Pumping Station in Taiwan. We proposed deep learning models, specifically Convolutional Neural Networks combined with Back Propagation Neural Networks (CNN-BP), to make multi-input multi-output multi-step (MIMOMS) forecasts on sewer water levels at intervals from 10 to 40 min (T+1 to T+4) and MIMO forecasts on the pumping station's internal (forebay) and external (river) water levels at intervals from 10 to 60 min (T+1 to T+6). The CNN-BP model exhibited superior forecast accuracy, reaching an R