Epithelial-mesenchymal transition promotes metabolic reprogramming to suppress ferroptosis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhibing Duan, Wenzheng Guo, Jingjing Wu, Binhua P Zhou

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Seminars in cancer biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 723168

Epithelial-mesenchymal transition (EMT) is a cellular de-differentiation process that provides cells with the increased plasticity and stem cell-like traits required during embryonic development, tissue remodeling, wound healing and metastasis. Morphologically, EMT confers tumor cells with fibroblast-like properties that lead to the rearrangement of cytoskeleton (loss of stiffness) and decrease of membrane rigidity by incorporating high level of poly-unsaturated fatty acids (PUFA) in their phospholipid membrane. Although large amounts of PUFA in membrane reduces rigidity and offers capabilities for tumor cells with the unbridled ability to stretch, bend and twist in metastasis, these PUFA are highly susceptible to lipid peroxidation, which leads to the breakdown of membrane integrity and, ultimately results in ferroptosis. To escape the ferroptotic risk, EMT also triggers the rewiring of metabolic program, particularly in lipid metabolism, to enforce the epigenetic regulation of EMT and mitigate the potential damages from ferroptosis. Thus, the interplay among EMT, lipid metabolism, and ferroptosis highlights a new layer of intricated regulation in cancer biology and metastasis. Here we summarize the latest findings and discuss these mutual interactions. Finally, we provide perspectives of how these interplays contribute to cellular plasticity and ferroptosis resistance in metastatic tumor cells that can be explored for innovative therapeutic interventions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH