The transition-metal-catalyzed ring-opening functionalization of aziridines presents a promising approach for synthesizing structurally complex amines. However, the rearranged functionalization of aziridines poses significant challenges. Herein, we report the first rearranged alkenylation of aziridines with aryl alkenes via Ni-Brønsted acid co-catalysis, leading to the rapid synthesis of a diverse array of allylamines with yields reaching up to 91%. Mechanistic studies suggest that the reaction occurs through the rearrangement of aziridine to generate an imine intermediate. This intermediate is subsequently captured by an alkene under nickel catalysis, ultimately leading to the formation of allylamines.