This study presents the design and performance of microbial fuel cells (MFCs) utilizing sewage water as a renewable source for electricity generation. The proposed MFCs employ an air-cathode, single-chamber configuration that harnesses atmospheric oxygen as the electron acceptor, eliminating the need for consumable electron acceptor chemicals. Unlike traditional systems, no external microorganisms are introduced
instead, indigenous microbial communities present in sewage are utilized as efficient biocatalysts. The anode is constructed from graphitized corncob, a biomass-derived material that surpasses conventional anodes such as carbon cloth and carbon paper, achieving power densities of 450 ± 15 mW/m