Predicting diabetic retinopathy based on routine laboratory tests by machine learning algorithms.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yanwei Hu, Biao Song, Xiaohua Wan, Yanan Wang, Wei Wei, Lin Zhang, Ruihuan Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 551.5246 Meteorology

Thông tin xuất bản: England : European journal of medical research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 723828

OBJECTIVES: This study aimed to identify risk factors for diabetic retinopathy (DR) and develop machine learning (ML)-based predictive models using routine laboratory data in patients with type 2 diabetes mellitus (T2DM). METHODS: Clinical data from 4259 T2DM inpatients at Beijing Tongren Hospital were analyzed, divided into a model construction data set (N = 3936) and an external validation data set (N = 323). Using 39 optimal variables, a prediction model was constructed using the eXtreme Gradient Boosting (XGBoost) algorithm and compared with four other algorithms: support vector machine (SVM), gradient boosting decision tree (GBDT), neural network (NN), and logistic regression (LR). The Shapley Additive exPlanation (SHAP) method was employed to interpret the XGBoost model. External validation was performed to assess model performance. RESULTS: DR was present in 47.69% (N = 1877) of T2DM patients in the model construction data set. Among the models tested, the XGBoost model performed best with an AUC of 0.831, accuracy of 0.757, sensitivity of 0.754, specificity of 0.759, and F1-score of 0.752. SHAP explained feature importance for XGBoost model and identified key risk factors for DR. External validation yielded an accuracy of 0.650 for the XGBoost model. CONCLUSIONS: The XGBoost-based prediction model effectively assesses DR risk in T2DM patients using routine laboratory data, aiding clinicians in identifying high-risk individuals and guiding personalized management strategies, especially in medically underserved areas.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH