BitBIRCH: efficient clustering of large molecular libraries.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lexin Chen, Kate Huddleston, Vicky Jung, Ramón Alain Miranda-Quintana, Kenneth López Pérez

Ngôn ngữ: eng

Ký hiệu phân loại: 785.13 *Trios

Thông tin xuất bản: England : Digital discovery , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 724459

The widespread use of Machine Learning (ML) techniques in chemical applications has come with the pressing need to analyze extremely large molecular libraries. In particular, clustering remains one of the most common tools to dissect the chemical space. Unfortunately, most current approaches present unfavorable time and memory scaling, which makes them unsuitable to handle million- and billion-sized sets. Here, we propose to bypass these problems with a time- and memory-efficient clustering algorithm, BitBIRCH. This method uses a tree structure similar to the one found in the Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm to ensure
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH