Hybrid CNN-Mamba model for multi-scale fundus image enhancement.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qiyuan Cao, Yi Chen, Kun Fan, Di Gong, Lina Jia, Meng Li, Qiang Liu, Xiaopeng Wang, Qiang Yang, Zheng Zong

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Biomedical optics express , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 724478

This study proposes a multi-scale fundus image enhancement approach that combines CNN with Mamba, demonstrating clear superiority across multiple benchmarks. The model consistently achieves top performance on public datasets, with the lowest FID and KID scores, and the highest PSNR and SSIM values, particularly excelling at larger image resolutions. Notably, its performance improves as the image size increases, with several metrics reaching optimal values at 1024 × 1024 resolution. Scale generalizability further highlights the model's exceptional structural preservation capability. Additionally, its high VSD and IOU scores in segmentation tasks further validate its practical effectiveness, making it a valuable tool for enhancing fundus images and improving diagnostic accuracy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH