Cataract surgery requires selecting an intraocular lens (IOL), whose design affects visual outcomes. Traditional IOL evaluation relies on optical models and bench testing, but these methods fall short in simulating perceptual factors crucial to patient experience. Visual simulators, based on different principles including adaptive optics, temporal multiplexing or physical projection of the IOLs, now allow patients and clinicians to preview and compare different IOL designs preoperatively. By simulating real-world interactions of the eye's optics and the visual system with IOLs, these simulators enhance the patient decision-making process, enable personalized cataract surgery, and can aid in regulatory assessments of IOLs by incorporating pre-operative patient-reported visual outcomes. Visual simulators incorporate deformable mirrors, spatial light modulators and optotunable lenses as dynamic elements to simulate monofocal, multifocal and extended depth-of-focus IOLs, including newer designs aimed at improving contrast sensitivity, expanding depth of focus, and minimizing visual disturbances. With ongoing advancements, these simulators hold potential for transforming IOL design, regulatory processes, and patient care by providing realistic and patient-centered visual assessments, ultimately leading to more successful, individualized surgical outcomes.