Design and characterization of an optical phantom for mesoscopic multimodal fluorescence lifetime imaging and optical coherence elastography.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luis Chavez, David T Corr, Caroline Edelheit, Shan Gao, Matt S Hepburn, Xavier Intes, Brendan F Kennedy, Jiayue Li, Vikas Pandey, Saif Ragab, Percy Smith, Nanxue Yuan

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Biomedical optics express , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 724501

We developed a novel methodology for manufacturing multimodal, tissue-mimicking phantoms that exhibit both molecular and biomechanical contrast. This methodology leverages the immiscibility of silicone and hydrogels to create solid mesoscale phantoms with localized regions of precisely controlled fluorescence, including fluorescence lifetime properties, and adjustable stiffness, without requiring physical barriers. Mechanical, fluorescent, and optical characterization confirmed the tunability of the phantoms across a range of values relevant to biomedical applications. A macroscale 3D phantom was fabricated, and its properties were validated through fluorescence lifetime imaging (FLI) and optical coherence elastography (OCE). Validation demonstrated the successful tuning of both mechanical and fluorescence lifetime contrasts within a 3D structure, highlighting the feasibility of multimodal FLI-OCE. This new phantom manufacturing process is expected to support the development and validation of new multimodal imaging approaches to study molecular and biomechanical properties of the tumor microenvironment (TME), as well as their impact on therapeutic efficacy, and to enhance targeted therapies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH