Safe-by-Design Strategies for Intranasal Drug Delivery Systems: Machine and Deep Learning Solutions to Differentiate Epithelial Tissues via Attenuated Total Reflection Fourier Transform Infrared Spectroscopy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Leo Kavallaris, Chrystelle Mavoungou, Frank Rosenau, Romain Topalian

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: United States : ACS pharmacology & translational science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 724706

The development of nasal drug delivery systems requires advanced analytical techniques and tools that allow for distinguishing between the nose-to-brain epithelial tissues with better precision, where traditional bioanalytical methods frequently fail. In this study, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy is coupled to machine learning (ML) and deep learning (DL) techniques to discriminate effectively between epithelial tissues. The primary goal of this work was to develop Safe-by-Design models for intranasal drug delivery using ex vivo pig tissues experiment, which were analyzed by way of ML modeling. We compiled an ATR-FTIR spectral data set from olfactory epithelium (OE), respiratory epithelium (RE), and tracheal tissues. The data set was used to train and test different ML algorithms. Accuracy, sensitivity, specificity, and F1 score metrics were used to evaluate optimized model performance and their abilities to identify specific spectral signatures relevant to each tissue type. The used feedforward neural network (FNN) has shown 0.99 accuracy, indicating that it had performed a discrimination with a high level of trueness estimates, without overfitting, unlike the built support vector machine (SVM) model. Important spectral features detailing the assignment and site of two-dimensional (2D) protein structures per tissue type were determined by the SHapley Additive exPlanations (SHAP) value analysis of the FNN model. Furthermore, a denoising autoencoder was built to improve spectral quality by reducing noise, as confirmed by higher Pearson correlation coefficients for denoised spectra. The combination of spectroscopic analysis with ML modeling offers a promising strategy called, Safe-by-Design, as a monitoring strategy for intranasal drug delivery systems, also for designing the analysis of tissue for diagnosis purposes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH