Artificial intelligence for the analysis of intracoronary optical coherence tomography images: a systematic review.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Pierandrea Cancian, Javier Escaned, Giulio Guagliumi, Niels R Holm, Ivana Išgum, Elvin Kedhi, Thijs J Luttikholt, Shamir R Mehta, Raúl Moreno, Dario Pellegrini, Natalia Pinilla-Echeverri, Lorenz Räber, Tomasz Roleder, Clara I Sánchez, Gregg W Stone, Jos Thannhauser, Ruben G A van der Waerden, Joske L van der Zande, Bram van Ginneken, Niels van Royen, Rick H J A Volleberg

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : European heart journal. Digital health , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 725132

Intracoronary optical coherence tomography (OCT) is a valuable tool for, among others, periprocedural guidance of percutaneous coronary revascularization and the assessment of stent failure. However, manual OCT image interpretation is challenging and time-consuming, which limits widespread clinical adoption. Automated analysis of OCT frames using artificial intelligence (AI) offers a potential solution. For example, AI can be employed for automated OCT image interpretation, plaque quantification, and clinical event prediction. Many AI models for these purposes have been proposed in recent years. However, these models have not been systematically evaluated in terms of model characteristics, performances, and bias. We performed a systematic review of AI models developed for OCT analysis to evaluate the trends and performances, including a systematic evaluation of potential sources of bias in model development and evaluation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH