A comparison of artificial intelligence-enhanced electrocardiography approaches for the prediction of time to mortality using electrocardiogram images.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel B Kramer, Fu Siong Ng, Libor Pastika, Konstantinos Patlatzoglou, Nicholas S Peters, Antônio H Ribeiro, Antonio Luiz P Ribeiro, Ester Sabino, Arunashis Sau, Jonathan W Waks, Boroumand Zeidaabadi

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : European heart journal. Digital health , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 725137

AIMS: Most artificial intelligence-enhanced electrocardiogram (AI-ECG) models used to predict adverse events including death require that the ECGs be stored digitally. However, the majority of clinical facilities worldwide store ECGs as images. METHODS AND RESULTS: A total of 1 163 401 ECGs (189 539 patients) from a secondary care data set were available as both natively digital traces and PDF images. A digitization pipeline extracted signals from PDFs. Separate 1D convolutional neural network (CNN) models were trained on natively digital or digitized ECGs, with a discrete-time survival loss function to predict CONCLUSION: Both the image 2D CNN and digitized 1D CNN enable mortality prediction from ECG images, with comparable performance to natively digital 1D CNN. Models trained on natively digital 1D ECGs can also be applied to digitized 1D ECGs, without any significant loss in performance. This work allows AI-ECG mortality prediction to be applied in diverse global settings lacking digital ECG infrastructure.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH