The advancement of single-cell sequencing technology has promoted the generation of a large amount of single-cell transcriptional profiles, providing unprecedented opportunities to identify drug-resistant cell subpopulations within a tumor. However, few studies have focused on drug response prediction at single-cell level, and their performance remains suboptimal. This paper proposed scAdaDrug, a novel multi-source domain adaptation model powered by adaptive importance-aware representation learning to predict drug response of individual cells. We used a shared encoder to extract domain-invariant features related to drug response from multiple source domains by utilizing adversarial domain adaptation. Particularly, we introduced a plug-and-play module to generate importance-aware and mutually independent weights, which could adaptively modulate the latent representation of each sample in element-wise manner between source and target domains. Extensive experimental results showed that our model achieved state-of-the-art performance in predicting drug response on multiple independent datasets, including single-cell datasets derived from both cell lines and patient-derived xenografts (PDX) models, as well as clinical tumor patient cohorts. Moreover, the ablation experiments demonstrated our model effectively captured the underlying patterns determining drug response from multiple source domains. The source codes and datasets are available at: https://github.com/hliulab/scAdaDrug.