Simultaneous variable selection and estimation for a partially linear Cox model.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tingting Cai, Tao Hu, Jianguo Sun, Mengqi Xie

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Statistical methods in medical research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 725913

We consider simultaneous variable selection and estimation for a deep neural network-based partially linear Cox model and propose a novel penalized approach. In particular, a two-step iterative algorithm is developed with the use of the minimum information criterion to ensure sparse estimation. The proposed method circumvents the curse of dimensionality while facilitating the interpretability of linear covariate effects on survival, and the algorithm greatly reduces the computational burden by avoiding the need to select the optimal tuning parameters that is usually required by many other popular penalties. The convergence rate and asymptotic properties of the resulting estimator are established along with the consistency of variable selection. The performance of the procedure is demonstrated through extensive simulation studies and an application to a myeloma dataset.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH