Effect estimation in the presence of a misclassified binary mediator.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kimberly A Hochstedler Webb, Martin T Wells

Ngôn ngữ: eng

Ký hiệu phân loại: 003.209 Historical, geographic, persons treatment of forecasting as a discipline

Thông tin xuất bản: England : Statistical methods in medical research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 725921

Mediation analyses allow researchers to quantify the effect of an exposure variable on an outcome variable through a mediator variable. If a binary mediator variable is misclassified, the resulting analysis can be severely biased. Misclassification is especially difficult to deal with when it is differential and when there are no gold standard labels available. Previous work has addressed this problem using a sensitivity analysis framework or by assuming that misclassification rates are known. We leverage a variable related to the misclassification mechanism to recover unbiased parameter estimates without using gold standard labels. The proposed methods require the reasonable assumption that the sum of the sensitivity and specificity is greater than 1. Three correction methods are presented: (1) An ordinary least squares correction for Normal outcome models, (2) a multi-step predictive value weighting method, and (3) a seamless expectation-maximization algorithm. We apply our misclassification correction strategies to investigate the mediating role of gestational hypertension on the association between maternal age and pre-term birth.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH