Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Anne N Banducci, Daniel Chen, Michael Davenport, Jennifer R Fonda, Zig Hinds, Nicholas A Livingston, Lauren B Loeffel, Amar D Mandavia, Brittany Mathes-Winnicki, Frank Meng, Noam Newberger, Clara E Roth, Alexis Sarpong, Rebecca Sistad Hall, Maria Ting

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: United States : Journal of psychopathology and clinical science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 725931

Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH