BackgroundGenome-wide association studies (GWAS) have identified numerous genetic variants associated with Alzheimer's disease (AD), but their functional implications remain unclear. Transcriptome-wide association studies (TWAS) offer enhanced statistical power by analyzing genetic associations at the gene level rather than at the variant level, enabling assessment of how genetically-regulated gene expression influences AD risk. However, previous AD-TWAS have been limited by small expression quantitative trait loci (eQTL) reference datasets or reliance on AD-by-proxy phenotypes.ObjectiveTo perform the most powerful AD-TWAS to date using summary statistics from the largest available brain and blood