Neutral-atom quantum processors are a promising platform for large-scale quantum computing. Integrating them with optical cavities enables fast nondestructive qubit readout and access to fast remote entanglement generation for quantum networking. In this work, we introduce a platform for coupling single atoms in optical tweezers to a Fabry-Perot fiber cavity. Leveraging the strong atom-cavity coupling, we demonstrated fast qubit-state readout with [Formula: see text] fidelity and two methods for cavity-mediated entanglement generation with integrated error detection. First, we used cavity-carving to generate a Bell state with 91(4)% fidelity and a 32(1)% success rate (the number in parentheses is the standard deviation). Second, we performed a cavity-mediated gate with a deterministic entanglement fidelity of 52.5(18)%, increased to 76(2)% with error detection. Our approach provides a route toward modular quantum computing and networking.