Introducing the concept of topology into material science has sparked a revolution from classic electronic and optoelectronic devices to topological quantum devices. The latter has potential for transferring energy and information with unprecedented efficiency. Here, we demonstrate a topological diode effect on the surface of a three-dimensional material, SmB[Formula: see text], a candidate topological Kondo insulator. The diode effect is evidenced by pronounced rectification and photogalvanic effects under electromagnetic modulation and radiation at radio frequency. Our experimental results and modeling suggest that these prominent effects are intimately tied to the spatially inhomogeneous formation of topological surface states (TSS) at the intermediate temperature. This work provides a manner of breaking the mirror symmetry (in addition to the inversion symmetry), resulting in the formation of [Formula: see text]-junctions between puddles of metallic TSS. This effect paves the way for efficient current rectifiers or energy-harvesting devices working down to radio frequency range at low temperature, which could be extended to high temperatures using other topological insulators with large bulk gap.